
Physics 566 Fall 2010 
Problem Set #4 

Due: Friday Oct. 8, 2010 
 
 
Problem 1:  Free induction decay (10 Points) 
(a) Assume a 2-level atom, initially in the ground state. At t = 0, apply a pulse of light, 
with oscillation frequency wo, i.e., on resonance. The shape of the pulse is described by 
an envelope function E(t), with E(0) = E(T) = 0. Assume that

� 

T << Γ−1, so you can ignore 
spontaneous emission. Find the condition on 

� 

dtE(t)∫  from 0 to T such that after the 
pulse is over, 

� 

ρee = 1/2 .  What is 

� 

ρeg (in the rotating frame)? 
(b) Take the case of sodium where 

� 

Γ−1 = 16 ns, and the optical wavelength is 589 nm. 
Take E(t) to be constant from t =0 to t =T, and let T = 100 ps (this is a typical pulse 
length for a garden variety mode-locked laser).  Assume, as we have before, that the atom 
is a 2-level atom, with the transition dipole moment being along z, and that the laser is 
polarized along z. Calculate what intensity (in Watts/cm2) is required to achieve the π/2 
pulse of part (a). Compare this power to the power such that the Rabi frequency 

� 

Ω = Γ . 
(c) Starting with the atom as in part (a), after the pulse, calculate the evolution of the 
density matrix (

� 

ρee  and 

� 

ρeg ). Describe the evolution. This is the free induction decay due 
to spontaneous emission. 
 
Problem 2: Dark states (10 points) 
Let us consider again a three level “lambda system” 

 
The two ground states are resonantly coupled to the excited state, each with a different 
Rabi frequency. Taking the two ground states as the zero of energy, then in the RWA 
(and in the rotating  frame) the Hamiltonian is 

  

� 

ˆ H AL = −

2
Ω1 g1 e + e g1( ) + Ω2 g2 e + e g2( )[ ] 

 
(a) Find the “dressed states” of this system (i.e. the eigenstates and eigenvalues of the 
total atom laser system).  You should find that one of these states has a zero eigenvalue, 

� 

Dark = Ω2 g1 − Ω1 g2  
This particular superposition is called a “dark state” or uncoupled state because the laser 
field does not couple it to the excited state. Explain how this can be true.  
(b) Adiabatic transfer through the “nonintuitive” pulse sequence.  Suppose we want to 
transfer population from 

� 

g1  to 

� 

g2 . Could try to Raman-Rabi flop between these states 



as in the previous problem set. An alternative, and robust method is to use adiabatic 
passage, always staying in the local dark state. This can then be on resonance. 
Show that if we apply a slowly varying pulse 

� 

Ω2(t)  overlapped, but followed by 

� 

Ω1(t) 
shown below, 

 
we accomplish this transfer. Hint: Sketch the dressed state eigenvalues a function of 
time. Note, the pulse sequence going from  

� 

g1 → g2   is “counter intuitive” as a 
realtransition involving absorption and emission. This is quantum mechanics! 
 
 
Problem 3:  Lorentz Classical Model of Absorption and Emission (15 points) 
Suppose we were to model an atom as an electron on a spring - i.e. a damped simple 
harmonic oscillator of mass m, with resonance frequency ω0 , and damping constant Γ.  
Consider driving the oscillator with a monochromatic plane wave, of frequency ω L .  

E cos(    t)Lω

 
(a)  Show that rate at which the dipole absorbs energy from the field,  given by the rate at 
which the field does work on the charge averaged over one period, is 
 

 

� 

dWabs

dt
=
πe2 |E |2

4m
g(ωL ) ,  where g(ω) = Γ / (2π)

(ω − ωeg)
2 + Γ2 / 4

 is the line shape. 

Assume near resonance so that 

� 

Δ = ωL −ω0 << ωL ,ω0. 
 
(b)  The absorption cross section, σabs, is defined as the rate at which energy is absorbed 
by an atom, divided by the flux, Φ, of photons incident on the atom,   Φ ≡ I / ω L  (i.e. the 

rate of photons incident on the atom per unit area), where I = c
8π
|E0 |

2   is the incident 

intensity (CGS units). Show that the classical model of absorption gives, 
 

σclassical=
2π 2e2

mc
g(ωL ) , 

Evaluate this on-resonance, for a the parameters associated with Na, where the excitation 
wavelength is 589 nm and the linewidth (Full width at half-maximum) is 10 MHz. 



The ratio of the integrated cross section an atomic transition and that given by the 
classical model to the quantum mechanical expression with equal resonance frequency 
and line width is known as the oscillator strength of the transition.   
 

(c)   From standard texts we have 
  
σquantum = 4π

2 e2

c
e x g 2

ωL g(ω L) , where e x g  is 

the matrix element of the electron position relative to the nucleus for the resonant 
transition.   Show that  on resonance, 

  
f =

σquantum
σclassical

=
2mω0


e x g 2
.    

Note that    / 2mω0  is the square of the characteristic length scale of a quantum simple 
harmonic oscillator .  Thus, the oscillator strength measures the ratio of dipole oscillation 
amplitude for a two level atom as compared to a simple harmonic oscillator. 
 
    Let us now assume that our spring has no intrinsic damping associated with it.  
Consider the scattering of an electromagnetic wave by this oscillating charge. As the 
charge radiates, the electromagnetic field will carry away energy.  This energy must 
come from the kinetic energy of the accelerating charge.  Thus the very act of radiating 
should "damp" the motion of the charge.  This is known as radiation reaction, and will 
determine a classical decay rate Γclass for the oscillator.  In steady state the power 
radiated by the charge (given by the classical Larmor formula) is equal to the power 
absorbed.   
 
(d) Assume that the oscillator is damped as Γclass, and show that 

Pabs = Pradiated⇒Γclass =
2
3
e2

mc3
ω 2 =

2
3
k rcω ,where rc is the classical electron radius. 

 
(e)  Show that the quantum mechanical decay rate is related to the classical formula by  
   Γquantum= f Γclass,   where f is the oscillator strength. 

 
 



Problem 4:  Radiation reaction and decay of the quantum oscillator (15 points) 
Radiation reaction can be shown to be lead to the decay of the quantum mechanical 
oscillator as well if we work in the Heisenberg picture.  Start with the total Hamitonian 
for a two level atom interacting with the quantized field, as discussed in class, 
 

  
ˆ H =

1
2
ωeg

ˆ σ z + ω k ˆ a kλ
† ˆ a kλ −

kλ
∑ (gkλ ˆ σ + ˆ a kλ

kλ
∑ + gkλ

* ˆ a kλ
† ˆ σ − ) , 

where 
  
gkλ = i 2πωk

V
 
ε kλ ⋅deg . 

Note:  We have expressed the interaction operator in "normally ordered" form, so that 
annihilation operators are to the right and creation operators are to the left.  We have 
complete freedom to do this since field and atomic operators commute at equal times. 
 
(a)  Show that the Heisenberg equations of motion are: 
 
 d

dt
ˆ a kλ = −iωk ˆ a kλ + igkλ

∗ ˆ σ −  

 

 

� 

d
dt

ˆ σ − = −iωeg ˆ σ − − i gk,λ
k ,λ
∑ ˆ σ z ˆ a kλ  

 

 

� 

d
dt

ˆ σ z = 2i gkλ ˆ σ + ˆ a kλ − gkλ
∗ ˆ a kλ

† ˆ σ −( )
k,λ
∑  

 
(b)  The first equation is linear in the operators, and so can be formally integrated.  Show 
that 
 

  

ˆ a kλ (t) = ˆ a kλ(0)e− iωk t

ˆ a kλ
vac ( t )

     + igkλ
∗ d ′ t ˆ σ −( ′ t )e− iωk ( t− ′ t )

0

t

∫
ˆ a kλ

source ( t )
           

 

is a solution.  The first term ˆ a kλ
vac (t)  is known as the vacuum field operator and ˆ a kλ

source (t)  is 
known as the source component due to dipole radiation by the atom. 
 
(c) Show that, in general, given [ ˆ a kλ(t), ˆ a ′ k ′ λ 

† (t)] = δλ ′ λ δk ′ k , unitary evolution implies 

� 

ˆ a kλ (0), ˆ a kλ
† (0)[ ] = δλ ′ λ δk ′ k .  Show that the source part alone does not satisfy these relations.  

 



(d)  Plug the solution (b) back into the equation for ˆ σ z  .  Take the Heisenberg state of the 
system (initial state in the Schrodinger picture) to be Ψ = ψ atom ⊗ 0 field , i.e., arbitrary 

state of the atom plus field in the vacuum.  Shown that expectation value satisfies 
 

 

� 

d
dt

ˆ σ z = −2 gkλ
2

kλ
∑ ˆ σ + (t) ˆ σ −( ′ t )

0

t

∫ e− iω k (t− ′ t ) + c.c  

 
(e) Now let us make the Markov approximation. Assume that ˆ σ −(t) = ˆ Σ −(t)e− iωeg t , where  
ˆ Σ − (t)  is a slowly varying operator on the scale of ωeg.  Under this assumption 
ˆ Σ + (t) ˆ Σ −( ′ t ) ≈ ˆ Σ + (t) ˆ Σ − (t) = ˆ σ + (t) ˆ σ −(t) .  Use this approximation to show, 

 
    d

dt
ˆ σ z = −Γ 1 + ˆ σ z( ) ,  

 where Γ = 2π gkλ
2
δ (ωk − ωeg )

kλ
∑  is the Einstein A coefficient! 

 
This is the expected decay!  Note that vacuum fluctuations play no role in determining 
the rate of emission.  They just initiate the process if the initial dipole moment is zero. 
 
 



Problem 5: Extra Credit  
Momentum and Angular Momentum in the E&M Field (20 points) 
From classical electromagnetic field theory we know that conservation laws require that 
the field carry momentum and angular momentum 
 

� 

P = d3x∫ E(x) ×B(x)
4πc

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ , 

� 

J = d3x∫ x × E(x) ×B(x)
4πc

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ . 

 
(a)  Show that when these quantities become field operators, the momentum operator 
becomes, 

  

� 

ˆ P = k ˆ a k,λ
†

k,λ
∑ ˆ a k ,λ;  interpret. 

(b)  Show that 

� 

J = Jorb + Jspin  

where  

� 

Jorb = 1
4πc

d3x Ei(x)∫ x ×∇( )Ai(x) ,  

� 

Jspin = 1
4πc

d3x∫ E(x) ×A(x)( )  

(c)  Show that 

  

� 

ˆ J orb = ˆ a ′ k ,λ
† i∇kδ (k − ′ k ) × k( ) ˆ a k ,λ

λ
∑

k , ′ k 
∑ , where 

� 

∇k  is the gradient in k-space, and 

  

� 

ˆ J spin =  ˆ a k,+
† ˆ a k ,+ − ˆ a k,−

† ˆ a k ,−( )ek
k
∑ .     Interpret these quantities. 

(d) The spin of the photon has magnitude S=1, yet there are only two helicity states. Thus 
we can map the spin angular momentum onto the Bloch(Poincaré) sphere  for S=1/2, via 

� 

ˆ J spin = ˆ J xex + ˆ J yey + ˆ J zez ,  

with 
  

� 

Jz = 
2

( ˆ a z +
† ˆ a z + − ˆ a z−

† ˆ a z−) ,  
  

� 

Jx = 
2

( ˆ a z +
† ˆ a z− + ˆ a z−

† ˆ a z + ) ,  
  

� 

Jy = 
2i

( ˆ a z +
† ˆ a z− − ˆ a z−

† ˆ a z + ) , 

where 

� 

( ˆ a z +, ˆ a z−)  are the mode operators for positive and negative helicity operators 
relative to a space fixed quantization axis. 
(di)  Show that these operators satisfy the SU(2) commutation algebra for angular 
momentum. This relationship is know as the “Schwinger representation”  (see Sakauri). 
(dii) The mean values of 

� 

ˆ J x , ˆ J y, ˆ J z  are the “Stokes parameters” in classical optics and the 
Bloch vector components on the Poincaré sphere.  Explain the relationship between these 
operators and the Pauli operators. 


